Use of Genetic Profiling in the NCCN Breast Cancer Guideline

Robert W. Carlson, M.D.
Chair, NCCN Breast Panel
Professor of Medicine
Stanford University School of Medicine
Rationale for Profiling

• Provide prognostic information
• Provide predictive information
• Allow biological sub-setting of breast cancer
 – For treatment decision making
 – For clinical investigation
Established Anatomic and Biological Factors

<table>
<thead>
<tr>
<th></th>
<th>Prognostic</th>
<th>Predictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph nodes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Tumor type</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Tumor grade</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LVI</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Proliferation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ER/PR status</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HER2 status</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Advantages of Established Anatomic and Biological Factors

- Decades of experience
- Enormous databases
- Multiple prospective trials (although often retrospectively analyzed)
- Methodologies widely available
- Technology is inexpensive
- Biology fairly well understood
Disadvantages of Established Anatomic and Biological Factors

- Current tests for ER, PR, and HER2 are often inaccurate as performed
- Individualizing treatment not fully possible
Advantages of Genetic Profiling

- Tests are probably highly accurate and reproducible
- Number of genes/pathways that can be included is enormous
- *Potential* of highly individualized therapy
Disadvantages of Genetic Profiling

- Limited experience
- Modest sized databases
- No prospective trials
- Methodologies not widely available
- Technology is expensive
- Biology usually not well understood
- Individualizing treatment not yet possible
MammaPrint: USA-FDA
Language

H. Intended Use:
1. Intended use(s):
MammaPrint® is a qualitative in vitro diagnostic test service, performed in a single laboratory, using the gene expression profile of fresh breast cancer tissue samples to assess a patients' risk for distant metastasis.

The test is performed for breast cancer patients who are less than 61 years old, with Stage I or Stage II disease, with tumor size <5.0 cm and lymph node negative. The MammaPrint® result is indicated for use by physicians as a prognostic marker only, along with other clinicopathological factors.
MammaPrint: USA-FDA
Language

H. Intended Use:

1. Intended use(s):
MammaPrint® is a qualitative in vitro diagnostic test service, performed in a single laboratory, using the gene expression profile of fresh breast cancer tissue samples to assess a patients' risk for distant metastasis.

The test is performed for breast cancer patients who are less than 61 years old, with Stage I or Stage II disease, with tumor size <5.0 cm and lymph node negative. The MammaPrint® result is indicated for use by physicians as a prognostic marker only, along with other clinicopathological factors.
H. Intended Use:

1. Intended use(s):
MammaPrint® is a qualitative in vitro diagnostic test service, performed in a single laboratory, using the gene expression profile of fresh breast cancer tissue samples to assess a patient's risk for distant metastasis.

The test is performed for breast cancer patients who are less than 61 years old, with Stage I or Stage II disease, with tumor size <5.0 cm and lymph node negative. The MammaPrint® result is indicated for use by physicians as a prognostic marker only, along with other clinicopathological factors.
MammaPrint® is a qualitative in vitro diagnostic test service, performed in a single laboratory, using the gene expression profile of fresh breast cancer tissue samples to assess a patient's risk for distant metastasis.

The test is performed for breast cancer patients who are less than 61 years old, with Stage I or Stage II disease, with tumor size 5.0 cm and lymph node negative. The MammaPrint® result is indicated for use by physicians as a prognostic marker only, along with other clinicopathological factors.
3. Special conditions for use statement(s):

For prescription use only

MammaPrint® is not intended for diagnosis, or to predict or detect response to therapy, or to help select the optimal therapy for patients.
OncoTypeDX: USA-FDA Language

- None.
- Testing is Clinical Laboratory Improvement Amendment certified.
Invasive Breast Cancer

Clinical Practice Guidelines in Oncology – v.1.2009

SYSTEMIC ADJUVANT TREATMENT - HORMONE RECEPTOR POSITIVE - HER2 NEGATIVE DISEASE

- Tumor ≤ 0.5 cm or
- Microinvasive or
- Tumor 0.6-1.0 cm, well differentiated, no unfavorable features

\[\text{pN0} \rightarrow \text{No adjuvant therapy} \]

\[\text{pN1mi} \rightarrow \text{Consider adjuvant endocrine therapy} \]

- Tumor 0.6-1.0 cm, moderate/poorly differentiated or unfavorable features

\[\rightarrow \text{Consider 21-gene RT-PCR assay (category 2B)} \]

\[\rightarrow \text{Low recurrence score (< 18)} \]

\[\rightarrow \text{Intermediate recurrence score (18-30)} \]

\[\rightarrow \text{High recurrence score (≥ 31)} \]

- Node positive (one or more metastases > 2 mm to one or more ipsilateral axillary lymph nodes)

\[\rightarrow \text{Adjuvant endocrine therapy + adjuvant chemotherapy (category 1)} \]

\[\rightarrow \text{Adjuvant endocrine therapy ± adjuvant chemotherapy (category 1)} \]

\[\rightarrow \text{Adjuvant endocrine therapy (category 2B)} \]

\[\rightarrow \text{Adjuvant endocrine therapy ± adjuvant chemotherapy (category 2B)} \]

\[\rightarrow \text{Adjuvant endocrine therapy + adjuvant chemotherapy (category 2B)} \]

Histology:
- Ductal
- Lobular
- Mixed
- Metaplastic

pT1, pT2, or pT3; and pN0 or pN1mi (≤ 2 mm axillary node metastasis)

Not done

Adjuvant endocrine therapy ± adjuvant chemotherapy (category 1)

BINV-6

Version 1.2009 © 2009 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN. Reproduced with permission from the NCCN 1.2009 Breast Cancer Guidelines. To view the most recent and complete version of the Guidelines, go online to www.nccn.org.
Invasive Breast Cancer

Clinical Practice Guidelines in Oncology – v.1.2009

SYSTEMIC ADJUVANT TREATMENT - HORMONE RECEPTOR POSITIVE - HER2 NEGATIVE DISEASE

- Tumor ≤ 0.5 cm or
 - Microinvasive or
 - Tumor 0.6-1.0 cm, well differentiated, no unfavorable features
 - pN0 → No adjuvant therapy

- pT1, pT2, or pT3; and pN0 or pN1mi (≤ 2 mm axillary node metastasis)
 - Consider adjuvant endocrine therapy

- Tumor 0.6-1.0 cm, moderate/poorly differentiated or unfavorable features
 - Consider 21-gene RT-PCR assay (category 2B)
 - Low recurrence score (< 18) → Adjuvant endocrine therapy (category 1)
 - Intermediate recurrence score (18-30) → Adjuvant endocrine therapy ± adjuvant chemotherapy (category 2B)
 - High recurrence score (≥ 31) → Adjuvant endocrine therapy + adjuvant chemotherapy (category 1)

- Node positive (one or more metastases > 2 mm to one or more ipsilateral axillary lymph nodes)
 - Adjuvant endocrine therapy + adjuvant chemotherapy (category 1)

BINV-6

Version 1.2009 © 2009 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN. Reproduced with permission from the NCCN 1.2009 Breast Cancer Guidelines. To view the most recent and complete version of the Guidelines, go online to www.nccn.org.
Invasive Breast Cancer

Clinical Practice Guidelines in Oncology – v.1.2009

SYSTEMIC ADJUVANT TREATMENT - HORMONE RECEPTOR POSITIVE - HER2 NEGATIVE DISEASE

- Tumor 0.6-1.0 cm, moderate/poorly differentiated or unfavorable features
- Tumor > 1 cm

Consider 21-gene RT-PCR assay (category 2B)

Not done

Low recurrence score (< 18)

Adjuvant endocrine therapy ± adjuvant chemotherapy (category 1)

Adjuvant endocrine therapy (category 2B)

Intermediate recurrence score (18-30)

Adjuvant endocrine therapy ± adjuvant chemotherapy (category 2B)

High recurrence score (≥ 31)

Adjuvant endocrine therapy + adjuvant chemotherapy (category 2B)
In an important change from the previous St Gallen conference and after a long debate, the Panel supported the use of a validated multigene-profiling assay, if readily available, as an adjunct to high-quality phenotyping of breast cancer in cases in which the indication for adjuvant chemotherapy remained uncertain.

• Oncotype DX™ can be used to determine prognosis in newly diagnosed patients with node-negative, estrogen-receptor positive breast cancer who will receive tamoxifen. Indications:
 – To predict risk of recurrence in patients considering treatment with tamoxifen
 – To identify patients who are predicted to obtain the most therapeutic benefit from adjuvant tamoxifen and may not require adjuvant chemotherapy
 – Patients with high recurrence scores appear to achieve relatively more benefit from adjuvant chemotherapy (specifically CMF) than from tamoxifen

Harris, et al, JCO, 2007
Conclusions may not be generalizable to hormonal therapies other than tamoxifen, or to other chemotherapy regimens.

Several other multi-parameter assays have been reported and a few are commercially available, including Mammaprint and the Rotterdam Signature. However, the Committee felt that the precise clinical utility and appropriate application for these other assays were insufficiently defined to recommend their use.

Harris, et al, JCO, 2007
The place of gene/molecular profiling shows promise but requires prospective validation before routine use.

Conclusions

• Technology exists to assess multiple gene expression in breast cancer
• Early retrospective data suggests ability to provide prognostic and/or predictive information
• Relative value of various multi-gene expression assays not defined
• Uncertainty in how to best integrate into current clinical guidelines and recommendations