2010年11月20日 NCCN/JCCNB Seminar in Japan 開催のお知らせ New 当日のプログラムを下記に掲載いたしました。

- < テ ー マ > 治療効果予測と予後予測~乳がんのターゲット治療の模索~ 乳がんにおける予後及び治療効果の予測検査法について、欧・米・東アジアからの招聘者と共に検討する国際セミナーです。
- < 場 所 > 東京国際フォーラム ホールB5

The Current Status and the Future Prospects of Multigene testing in Europe

Emiel J. Rutgers The Netherlands Cancer Institute Antoni Van Leeuwenhoek Hospital Amsterdam

St. Gallen Recommendations 2009 = 'Europe' (?)

St Gallen Recommendations 2007 for Adjuvant Treatment

endocrine highly and incompletely responsive HER2neg patients consider adding chemotherapy according to risk

ET: endocrine therapy **CT:** chemotherapy

Contractional Conference

 Contractional Contractional Conference

 Contractional Contraction Contractional Contractiona Contractional Contractional Contract

Goldhirsh et al, Ann Oncol 2007

Intermediate Risk Treatment Advice

 St Gallen 2009: The panel accepts the use of validated molecular based tools, if readily available, as an adjunct to high quality standard histopathologic assessment in patients with ER+ breast cancer when the doctor and the patient are uncertain or ambivalent about the administration of adjuvant chemotherapy.

Optimally the test should be used in clinical trials.

- Yes 80%
- No 18%
- unknown 3%

Guidelines: St Gallen International Expert Consensus 2009

Table 3. Chemoendocrine therapy in patients with ER-positive, HER2-negative disease

Clinicopathological Features				
	Relative Indications for Chemoendocrine therapy	Factors Not Useful for Decision	Relative Indications for Endocrine Therapy Alone	
ER, PgR	Lower ER and PgR level		Higher ER and PgR level	
Histological Grade	Grade 3	Grade 2	Grade 1	
Proliferation	High ^a	Intermediate ^a	Low ^a	
Nodes	Node positive (4 or more involved nodes)	Node positive (1-3 involved nodes)	Node negative	
Peritumoral Vascular Invasion (PVI)	Presence of extensive PVI		Absence of extensive PVI	
pT-size	> 5cm	2.1 – 5 cm	≤ 2 cm	
Patient Preference	Use all available treatments		Avoid side effects	
Multi-gene Assays		·		
Gene Signature ^b	High score	Intermediate score	Low score	

St. Gallen Recommendations on March 14th, 2009

MammaPrint Accepted into St. Gallen's Oncology Guidelines for Early Stage Breast Cancer Treatment

"The Panel accepts the use of validated molecularly based tools if readily available as an adjunct to high-quality standard histopathologic assessment in patients with ER+ breast cancer when the doctor and patient are uncertain or ambivalent about the administration of adjunctive chemotherapy."

In addition, the Panel felt "intermediate" results were of little clinical value.

St. Gallen Guideline Consensus, Annals of Oncology, 2009

Guidelines: St Gallen International Expert Consensus 2009

Table 3. Chemoendocrine therapy in patients with ER-positive, HER2-negative disease

Clinicopathological Features			
	Relative Indications for Chemoendocrine therapy	Factors Not Useful for Decision	Relative Indications for Endocrine Therapy Alone
ER, PgR	Lower ER and PgR level		Higher ER and PgR level
Histological Grade	Grade 3	Grade 2	Grade 1
Proliferation	High ^a	Intermediate ^a	Low ^a
Nodes	Node positive (4 or more involved nodes)	Node positive (1-3 involved nodes)	Node negative
Peritumoral Vascular Invasion (PVI)	Presence of extensive PVI		Absence of extensive PVI
pT-size	> 5cm	2.1 – 5 cm	≤2cm
Patient Preference	Use all available treatments		Avoid side effects
Multi-gene Assays	1	1	1
Gene Signature ^b 21 recurrence score	High score	Intermediate score	Low score
70 gene prognosis signa	ture		

Contrast of Appearance and Expression Phenotyping

21-Gene Recurrence Score (RS) Assay Oncotype DX (Genomic Health)

16 Cancer and 5 Reference Genes From 3 Studies

PROLIFERATION Ki-67 STK15 Survivin Cyclin B1 MYBL2	ESTROGEN ER PR Bcl2 SCUBE2
INVASION Stromolysin 3 Cathepsin L2	GSTM1 CD68 BAG1
HER2 GRB7 HER2	REFERENCE Beta-actin GAPDH GUS RPLPO TFRC

RS Weighting:

- + 0.47 x HER2 Group
- 0.34 x ER Group
- +1.04 x Proliferation Group
- + 0.10 x Invasion Group
- + 0.05 x CD68
- 0.08 x GSTM1
- 0.07 x BAG1

Category	RS (0 - 100)
Low risk	RS < 18
Intermediate risk	RS ≥ 18 and < 31
High risk	RS ≥ 31

Paik et al. N Engl J Med. 2004;351:2817-2826.

The Recurrence Score

The following results are from a clinical validation study with prospectively-defined endpoints involving 668 patients. The patients enrolled in the study were female, stage I or II, node-negative, ER-positive, and treated with tamoxifen. N Engl J Med 2004; 351:2817-26.

MammaPrint[®]: Enhanced Scientific Guidance Through Unbiased Gene Selection

High Risk or Low Risk, No Intermediates

70-gene MammaPrint

- Is <u>not</u> just another prognostic factor
- Is designed from the beginning to tell you the metastatic potential of an individual breast cancer

70-gene MammaPrint

 Function of majority of genes is identified and are all related to the process of dissemination

Prognostic value of the 70-gene assay

- Biologically plausible
- Better compared to conventional criteria (multivariate-analysis)
- Validated in 8 independent series

MammaPrint validation studies > 2500 patients

Validierungsstudie	Land	Reference	Jahr				
			2006	2007	2008	2009	2010
Independent European study		Buyse et al J NCI 17	302				
Prospective Study		de Mesquita et al. Lancet Oncology		427			
Dutch patient cohort		de Mesquito Breast Cancer Res Treat			123		
Core Needle biopsies		Mayordomo et al. ESMO Meeting			35		
Validation in US patients		Wittner et al. Clin Cancer Res 14			100		
Validation 1-3 LN+ patients	$\langle \rangle$	Mook et al. Breast Cancer Res Treat.			241		
Postmenopausal patients		Mook et al. Breast Cancer Res Treat			148		
Patients treated w Tamoxifen		Kok et al. (submitted)				192	
German patient cohort		Kunz et al. St. Gallen Conference				140	
Japanese patient cohort		Ishitobi et al. Jap J Clin Oncology				118	
Validation 4-9 LN+ patients		Saghastchian et al. St. Gallen Conf				167	
Neoadjuvant predictive study		Straver et al. Breast Cancer Res Treat				162	
Predictiveness study	$\langle \langle \rangle \rangle$	Knauer et al. Breast Cancer Res Treat					541

MammaPrint from Research to Diagnostics

- Retrospective validation
- Prospective Technology assessment
- Diagnostic test
- Laboratory
- Diagnostic test
- Diagnostic test
- Diagnostic test and clinical use
- Treatment Recommendations
- Treatment Recommendations

- Completed
- Utility & Cost-effectiveness
- International CE marked
- CLIA registered
- ISO17025 certified
- CAP accredited
- FDA approved, IVDMIA feb07
- Dutch Guidelines 08
- StGallen International Guidelines 09

Reproducibility Test Result >98% Success rate >95%

Glas et al, BMC Genomics 200

Validation 1: N = 151

vd Vijver et al, N Engl J Med 347: 1999-2009, 2002

TABLE 4. MULTIVARIABLE PROPORTIONAL-HAZARDS ANALYSISOF THE RISK OF DISTANT METASTASES AS A FIRST EVENT.

VARIABLE	Hazard Ratio (95% CI)*	P Value	
Poor-prognosis signature (vs. good- prognosis signature)	4.6 (2.3–9.2)	< 0.001	
Age (per 10-yr increment)	$0.73 \ (0.50 - 1.06)$	0.10	
Lymph-node status (per positive node)	$1.13\ (1.03 - 1.24)$	0.01	
Diameter of tumor (per cm)	$1.56\ (1.22 - 2.0)$	< 0.001	
Tumor grade Grade 2 (vs. grade 1) Grade 3 (vs. grade 1)	1.35 (0.61 - 3.0) 1.03 (0.44 - 2.4)	0.54	
Vascular invasion 1–3 Vessels (vs. 0 vessels) >3 Vessels (vs. 0 vessels)	0.66 (0.30–1.44) 1.65 (0.98–2.8)	0.05	
Estrogen-receptor expression (per point)†	$0.86 \ (0.56 - 1.31)$	0.48	
Mastectomy (vs. breast-conserving therapy)	$1.27 \ (0.79 - 2.0)$	0.32	
Chemotherapy (vs. no chemotherapy)	$0.37 (0.20 {-} 0.66)$	< 0.001	
Hormonal treatment (vs. no hormonal treatment)	$0.62 (0.29{-}1.34)$	0.23	

Validation 2: N = 307 Buyse M, et al.: J Natl Cancer Inst 98: 1183-92, 2006

Risk factor or classification	Time to distant metastases
Age (≤50y versus >50y)	0.86 (0.54 to 1.37)
Tumor size (T2 versus T1)	P = .52 1.42 (0.90 to 2.23) P = .14
Tumor grade (good versus intermediate versus	P = .14 0.76 (0.54 to 1.07) P = .12
Estrogen receptor status (negative versus positive)	P = .12 2.18 (1.37 to 3.48)
Adjuvant! software (high risk versus low risk)	P = .001 1.68 (0.92 to 3.07) P = .002
Nottingham Prognostic Index (high risk versus low risk) [†]	1.65 (1.02 to 2.66) P = 0.043
St Gallen criteria (high risk versus low risk)§	P = .043 2.22 (0.70 to 7.08) P = .18
Gene signature (high risk versus low risk)	P = .18 2.32 (1.35 to 4.00) P = .002

Validation 3: N = 123

Bueno-de-Mesquita JM: Breast Cancer Res Treatm 2008

The 70-gene Signature Outperforms: -Adjuvant Online -St Gallen criteria -Nottingham PI -CBO guidelines

Validation 4: N = 100

Wittner et al., Clin Cancer Res 14: 2988, 2008

St.Gallen RISK Categories

1696 patients analyzed from pooled database

	All endocrine responsive patients	Highly/incompletely responsive	All patients
Low risk	145	141	145
Intermediate risk	1020	773	1287
High risk	91	85	190
Total	1256/1696 = 74%	999/1696 = 59%	1622/1696 = 96%

Median follow-up 7.08 years \pm 5.02 (0.01 – 25.22)

Knauer et al, abstracts StGallen, ASCO and submitted 2009

Added value to assess risk in intermediate category by MammaPrint

Are they all at 'intermediate' risk? A large meta analysis

Pooled analysis MammaPrint

1696 patients with MammaPrint

7 studies:		
295 ptn van de Vijver et al	(<53, LN0/LN+)	(NEJM, 2002)
302 ptn Buyse et al.	(Transbig Int, <60, LN0)	(JNCI, 2006)
427 ptn Bueno et al.	(RASTER prosp, <60, LN0)	(Lancet Oncol, 2007)
123 ptn Bueno et al.	(Recent, LNneg)	(Br Can Res Tr, 2008)
241 ptn Mook et al.	(1-3 LNpos)	(Br Can Res Tr, 2008)
148 ptn Mook et al.	(age 55-70)	(SABCS 2007, #1063)
160 ptn Kok et al.	(adj tamoxifen)	(unpublished)

Median follow-up 7.08 years (0.01 – 25.22)

Knauer et al, abstracts StGallen, ASCO and submitted 2009

Intermediate Risk by MammaPrint

Knauer et al, abstracts StGallen, ASCO and submitted 2009

Issues in early breast cancer

- Is good pathology as good?
- Small cancers good prognosis?
- Her 2 overexpression: chemo?
- MammaPrint and chemo-effect

Issues in early breast cancer

• Is good pathology as good?

Is Grading the golden standard....

Or can we do better?

Patients (n=965)	Characteristic	n (%)
Age	≤ 50 years > 50 years	509 (53%) 456 (47%)
Tumor size	T1a/b T1c	140 (14%) 825 (86%)
Lymph node status	Node negative Node positive n.a.	716 (74%) 241 (25%) 8 (1%)
Histological grade	Grade 1 Grade 2 Grade 3 n.a.	280 (29%) 412 (43%) 262 (27%) 11 (1%)
Estrogen receptor status	Positive (≥10%)	808 (84%)
Progesterone receptor status	Positive (≥10%)	554 (57%)
Her2-status	Positive	91 (9%)
Adjuvant treatment	No adjuvant therapy Endocrine therapy Chemotherapy Both	562 (59%) 182 (19%) 100 (10%) 117 (12%)

DDFS N0

Survival Functions

DDFS N0

Survival Functions

DDFS N0

Survival Functions

MammaPrint adds to grading of breast cancer

Grade 1

Grade 2

Grade 3

Low risk

764 of 1630 patients (47%) were

Histological grading was centrally

(53%) as poor prognosis by

reviewed for all patients

MammaPrint

classified as good prognosis and 866

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Grade 1 Grade 2 Grade 3 High risk

MammaPrint high risk

MammaPrint low risk

Issues in early breast cancer

• Small cancers good prognosis?

Patient inclusion criteria:

T1 breast cancer

Irrespective of

- Age
- Nodal status
- ER, PR, Her2-status
- => 965 patients

Median follow-up 7.1 years (0.2-25.2)

MammaPrint and Tumorsize T1c BCSS

11 – 22 mm Tumors

T1c tumors derived from pooled database of all MammaPrint validation studies (all, n=1696)

Mook et al, Ann Surg Oncol, 2010

MammaPrint and Tumorsize T1ab BCSS

0 – 10 mm Tumors

T1ab tumors derived from pooled database of all MammaPrint validation studies (all, n=1696)

Mook et al, Ann Surg Oncol 2010

And Her-2 positive BC....

• Always poor prognosis?

DDFS: All patients

BCSS: All patients

Figure 1:

Distant disease-free survival (LEFT) and breast cancer-specific survival (RIGHT) according to the 70-gene signature for <u>all 169 Her2-positive breast</u> <u>cancer patients</u>.

Michael Knauer et al.

DDFS: without chemotherapy/trastuzumab

BCSS: without chemotherapy/trastuzumab

Figure 2:

Distant disease-free survival (LEFT) and breast cancer-specific survival

(RIGHT) according to the

70-gene signature for <u>90 patients without adjuvant chemotherapy or</u> trastuzumab.

Michael Knauer et al.

Figure 3:

Distant disease-free survival (LEFT) and breast cancer-specific survival (RIGHT) according to the

70-gene signature for <u>42 patients with highly endocrine-responsive tumors</u> according to the St.Gallen criteria. Out of 11 low risk patients, 7 were untreated, 4 received chemotherapy and one of those received trastuzumab.

Michael Knauer et al.

And Node +ve Breast Cancer?

 Always indication for chemotherapy? 70-gene Profile and Prognosis in Breast Cancer with 1-3 Axillary Lymph Node Metasases S. Mook et al., Breast Cancer Res Treatm 2008.

(95%CI 1.7 - 10.0), p=0.002

Good profile: sufficiently low risk?

Background

Objective

Methods

Results

Conclusions

Adjuvant Chemotherapy and 70 gene prognosis signature Clinical Utility and Clinical Benefit

- 70 gene Low Risk Signature group has low risk for recurrence, and does not show significant chemo benefit
- 70 gene High Risk signature patients show significant neo-adjuvant chemo-sensitivity
- 70 gene High Risk Signature Patients show substantial Clinical Benefit of Adjuvant Chemotherapy (Cave: not a randomized trial)

Issues in early breast cancer

MammaPrint and chemo-effect

Benefit of neo-adjuvant chemotherapy for MammaPrint high risk patients

MammaPrint low risk signature \rightarrow no benefit of chemotherapy MammaPrint high risk signature \rightarrow benefit of chemotherapy

•

•

۰

•

Neo-adjuvant Standard Chemotherapy and MammaPrint Clinical Benefit

- 70 gene MammaPrint High Risk Signature patients show significantly higher chemosensitivity
- All pCR are found in the High Risk Signature group

High Risk Signature Patients show Clinical Benefit of Chemotherapy

So far, no recurrences in MammaPrint good prognosis group

Straver et al 2009, Br Cancer Res and Treatment

Breast Cancer Specific Survival (5 yrs) Endocrine vs Endocrine-Chemo

within 70 gene low and high risk signature (n=575)

Interaction term for differential effect p=0.45; Cave: not a randomized trial

Knauer et al, abstracts StGallen, ASCO 2009, BCRT 2010, Albain et al 2009

Cox multivariate analysis: Backward Stepwise DDFS at 10 years for ET vs. ET + CT

Variable	p-value	HR	95% CI
Age	0.307	1.02	0.99-1.05
Tumor-Diameter	0.011	1.03	1.01-1.06
LN-status	0.136	1.17	0.95-1.44
Grade	0.024	1.78	1.08-2.95
ER-status	0.670	0.86	0.43-1.72
PR-status	0.012	0.48	0.27-0.85
Her2-status	0.398	1.33	0.69-2.55
ET vs. ET + CT	0.011	0.26	0.09-0.74

Adjuvant Standard Chemotherapy and MammaPrint Clinical Benefit

- MammaPrint High Risk signature patients
 show significant chemo-sensitivity
- MammaPrint Low Risk Signature group does not show significant chemo benefit

High Risk Signature Patients show substantial Clinical Benefit of Adjuvant Chemotherapy

(Cave: not a randomized trial)

Moving forward Genomics in Breast Cancer

- Science: Prospective evaluation 70 gene MammaPrint signature and therapy benefit, 6000 patients (TRANSBIG-MINDACT)
- Science: Provide comprehensive biobank and standard molecular biological assays to integrate knowledge on tumor type, germline status (TRANSBIG-MINDACT)

MINDACT trial

- Is <u>not</u> to validate the prognostic value of the 70-gene MammaPrint
- Will tell us if chemotherapy is rightfully witheld to patients with a MP good prognosis who would have been advised chemotherapy on the basis of current clinical criteria within strict limits: 5 yrs breast cancer specific survival of 93-95%.

potential chemotherapy sparing in 10-15% pts, without affecting survival

PRE-SPECIFIED PILOT PHASE FIRST 800 PTS TO ENSURE:

- Logistically feasible
- Unbiased patient recruitment
- Less CT in genomic-based risk group than in clinical-based risk group
- Compliance

MINDACT RECRUITMENT IN THE PILOT PHASE

MINDACT ENROLLED BY July 26 2010 after registration of 7183 pts.

Unbiased recruitment?

The patient population in the trial as compared to the patients from the validation series (all node -)

Older Fewer ER-, fewer HER2+ Tumor size smaller Tumor grade comparable

- Expected fraction of clinical high risk patients 77% vs. observed 42.4%.
- Change in biology of breast cancer and/or more screening detected?

RISK CROSS-TABLE

Clinical risk by 70 gene risk, at enrollment (overall % ages)				
	Clinical risk at enrollment			
	Low High risk risk Total (N=461) (N=339) (N=800			
	N (%)	N (%)	N (%)	
70 gene risk at enrollment				
Low risk	386 (48.3)	141 (17.6)	527 (65.9)	
High risk	75 (9.4)	198 (24.8)	273 (34.1)	

Discordant cases: 27%

Estimates: pC = 339/800 (42%) pG = 273/800 (34%)pC - pG = 8.25%, 95% CI = 4.69% - 11.81% (p < 0.0001)

WAS CHEMO ACTUALLY GIVEN? COMPLIANCE!

Chemotherapy administration (best current knowledge) by assignment to chemotherapy						
	Treatment dec	Treatment decision outcome				
	chemo (N=309)	no chemo chemo**** (N=309) (N=491)				
	N (%)	N (%)	N (%)			
Chemo received						
No	21* (6.8)	472 (96.1)	493 (61.6)			
Yes	268 (86.7)	19** (3.9)	287 (35.9)			
Unknown	20*** (6.5)	0 (0.0)	20 (2.5)			

92% assigned to CT, received 100% assigned to no CT, did not receive

Overall no significant difference in toxicity between different chemo regimens

CONCLUSIONS

- 1 Logistics feasible (>4500 pts enrolled!)
- 2 More low risk cancers: Change in biology of breast cancer and/or due to screening. This does not affect discordancy rates required for primary aim randomization
- 3 Clinicians & patients comply with the protocol in the "70-gene signature /genomic arm".
- 4 Statistically significant difference in reduction in Chemotherapy administration.

The 70-Gene Signature:

- 1. Has been <u>validated</u> in terms of prognostication and <u>adds</u> to conventional criteria
- 2. It has also been validated for $T_{1-3}N_1$ tumors and for elderly patients
- 3. The assay is stable and reliable (FDA)
- 4. There are strong indications that the goodprognosis profile is associated with <u>decreased</u> <u>chemotherapy benefit</u>

Using a good-prognosis 70-Gene Signature to withhold adjuvant chemotherapy in clinically low- to moderate risk patients is therefore justified

2010年11月20日 NCCN/JCCNB Seminar in Japan 開催のお知らせ New 当日のプログラムを下記に掲載いたしました。

- < テ ー マ > 治療効果予測と予後予測〜乳がんのターゲット治療の模索〜 乳がんにおける予後及び治療効果の予測検査法について、欧・米・東アジアからの招聘者と共に検討する国際セミナーです。
- < 場 所 > 東京国際フォーラム ホールB5

Thank you for your attention & discussion & inviting me JCCNB, Dr Seigo Nakamura

Paik et al, JCO, 2006 OTDX Predictive Data based on NSABP B-20 Archival FFPE Blocks

Multigene Predictor for Chemotherapy Response in Breast Cancer

			Tamoxifen		Tamoxifen Plus Chemotherapy			
Group	No. of Patients	10-Year DRF (%)	95% CI	No. of Patients	10-Year DRF (%)	95% CI	No. of Patients	
All patients	651	87.8	83.3% to 92.3%	227	92.2	89.4% to 94.9%	424	
Low risk (RS $<$ 18)	353	96.8	93.7% to 99.9%	135	95.6	92.7% to 98.6%	218	
Intermediate risk (RS 18-30)	134	90.9	82.5% to 99.4%	45	89.1	82.4% to 95.9%	89	
High risk (RS \geq 31)	164	60.5	46.2% to 74.8%	47	88.1	82.0% to 94.2%	(117)	

NOTE. Results are given for all patients and for the pre-specified Recurrence Score risk categories. Abbreviations: DRF, distant recurrence free; RS, recurrence score.

The "High Risk" Tam only arm contained only 47 patients whose OS and DDFS was the metric for comparison with Tam plus Chemorx benefit —a very small group. Paik et al. J Clin Oncol. 2006;24:3726-3734

TargetPrint, single gene read out ER/PR/HER2

ER	IHC pos	IHC neg	PR	IHC pos	IHC neg	HER2	IHC pos	IHC neg
MA pos	309	16	MA pos	194	48	MA pos	50	10
MA neg	9	62	MA neg	29	108	MA neg	8	342

N=~400	ER	PR	HER2
Accuracy	0.94	0.80	0.96
Sensitivity	0.97	0.87	0.86
Specificity	0.80	0.69	0.97

Conclusions:

- Very high concordance between microarray and IHC or FISH for ER and HER2
- Accurate read-out of ER, PR and HER2 on microarray